
O

A
s
J
K

A

K
R
K
W
P

C

1

a
v
v
(
(
s

i
a
m
i

h
R

SoftwareX 31 (2025) 102325

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

ffectStream: Kafka-based real-time affect monitoring system using wearable

ensors
eonghyun Kim , Duri Lee , Uichin Lee ∗

AIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

 R T I C L E I N F O

eywords:
eal-time affect monitoring
afka-based systems
earable sensors
ersonalized affect classification

 A B S T R A C T

Real-time affect monitoring is essential for personalized and adaptive applications in fields like education,
healthcare, and customer service. However, existing systems often struggle with scalability and low-latency
requirements for processing high-frequency sensor data. To address these challenges, we propose AffectStream,
a Kafka-based real-time affect monitoring system that processes wearable sensor data through a cloud-based
pub/sub architecture to the applications. AffectStream ensures scalability, fault tolerance, and personalized
emotional state analysis. Its robust performance is demonstrated through trace-based evaluations using three
public datasets (i.e., WESAD, AMIGOS, and GalaxyPPG). This open-source framework advances real-time
emotion recognition, paving the way for large-scale affective computing applications.

ode metadata

Current code version 1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-25-00173
Permanent link to Reproducible Capsule –
Legal Code License MIT License
Code versioning system used Git
Software code languages, tools, and services used Python, Java, Amazon Web Services, Terraform, Locust, Docker, SQL.
Compilation requirements, operating environments & dependencies Debian (Slim), Python 3.9.16, OpenJDK 21 (Early Access, Build 11), other

requirements provided in requirements.txt

If available Link to developer documentation/manual –
Support email for questions jeonghyun.kim@kaist.ac.kr

. Motivation and significance

Real-time affect monitoring refers to the process of tracking and
nalyzing a user’s affect state (e.g., feelings, moods, and stress levels)
ia real-time sensor data analysis. Affect monitoring involves collecting
arious behavioral (e.g., facial expression and voice [1]), physiological
e.g., heart rate, skin conductance [2]), and psychological sensor data
e.g., self-reported stress and mood [3]) to monitor the current affect
tate using wearable sensors (e.g., Samsung Watch and Google Fitbit).
Understanding and responding to users’ affect states is important, as

t allows for more personalized and adaptive interactions across various
pplications. Personalized and adaptive services using real-time affect
onitoring can be applied in multiple fields, such as education [4], mil-
tary training [5], healthcare [6], and empowerment at workplaces [7].

∗ Corresponding author.
E-mail addresses: jeonghyun.kim@kaist.ac.kr (Jeonghyun Kim), duri.lee@kaist.ac.kr (Duri Lee), uclee@kaist.ac.kr (Uichin Lee).

For example, educational software can monitor students’ cognitive and
emotional state, and dynamically adjust the difficulty of the content or
offer assistance that is appropriate to their emotions and concentration
levels to maximize learning effectiveness [4,8]. In military and medical
training, it could provide a targeted intervention by automatically
monitoring trainees’ affect condition in highly stressful environments,
helping the trainees manage their emotions [5,9].

In general, a real-time affect monitoring system consists of four
continuous and iterative stages: (1) data acquisition, (2) data streaming,
(3) data processing, and (4) data storage (see Fig. 1) [10,11]. In the
data acquisition stage, user data is collected in real time from one or
multiple wearable devices (e.g., smartwatch and chest band). During
the data streaming stage, large volumes of sensor data are transmitted
ttps://doi.org/10.1016/j.softx.2025.102325
eceived 17 March 2025; Received in revised form 11 August 2025; Accepted 18 August 2025
vailable online 28 August 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://orcid.org/0009-0009-5119-2261
https://orcid.org/0009-0009-9831-3278
https://orcid.org/0000-0002-1888-1569
https://github.com/ElsevierSoftwareX/SOFTX-D-25-00173
mailto:jeonghyun.kim@kaist.ac.kr
mailto:jeonghyun.kim@kaist.ac.kr
mailto:duri.lee@kaist.ac.kr
mailto:uclee@kaist.ac.kr
https://doi.org/10.1016/j.softx.2025.102325
https://doi.org/10.1016/j.softx.2025.102325
http://creativecommons.org/licenses/by/4.0/

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
Fig. 1. Four stages of real-time affect monitoring system.

and processed in real time, requiring mechanisms to ensure data order-
ing and integrity. In the data processing stage, features are extracted
and machine learning (ML) models are applied to estimate users’ affect
states from the collected data in real time. In the data storage stage,
both the raw sensor data and the inferred affect states are stored in a
large-scale storage system (e.g., cloud service) for future use.

To perform such complex data processing for a real-time affect mon-
itoring system, a scalable open-source platform for real-time sensor data
processing is necessary. Among well-known architectures, in this work,
we use the publisher/subscriber (pub/sub) architecture. The pub/sub
architecture utilizes one of the messaging patterns that allows for loose
coupling between publishers and subscribers. Therefore, it enhances
the efficiency of data transmission and processing, providing scalability
and flexibility for the system. This architecture has been widely used in
prior studies. Lohitha et al. [12] employed a cloud-based IoT platform
utilizing a pub/sub architecture for real-time sensor data analysis, and
Haque et al. [13] proposed a distributed pub/sub architecture for real-
time remote patient monitoring using Movesense [14] sensor, which
is a wearable sensor for measuring electrocardiogram (ECG), heart
rate and movement. Various messaging systems, such as RabbitMQ,
ActiveMQ, and Kafka, implement the pub/sub architecture.

• RabbitMQ: A message broker based on the Advanced Message
Queuing Protocol (AMQP), known for its reliable message queu-
ing and complex routing capabilities. Although RabbitMQ sup-
ports pub/sub messaging, its queuing system architecture is less
suited for handling high-frequency, large-scale data streams [15].

• ActiveMQ: A Java Message Service (JMS)-supported message bro-
ker that offers both queue and pub/sub models, making it suitable
for transactional messaging and enterprise applications [16].

• Kafka: A distributed streaming platform optimized for real-time
data streaming and high throughput. Its architecture excels in
log processing and scalable data pipelines [17]. Notably, Kafka
supports excellent real-time throughput and provides superior
performance in environments that require large-scale real-time
data processing and streaming [15].

Compared to RabbitMQ’s queuing mechanism and ActiveMQ’s trans-
actional messaging, Kafka’s high throughput and scalability make it the
optimal choice for real-time affect monitoring.

While prior benchmarking studies [15] have shown Kafka’s supe-
rior throughput and scalability compared to RabbitMQ and ActiveMQ,
our system’s architecture was primarily driven by a strict functional
requirement; i.e., per-user data ordering must be preserved across the
entire real-time data processing pipeline. RabbitMQ and ActiveMQ
can guarantee message order only within a single queue and under
sequential consumption [18,19]. However, ordering may be violated
under parallel consumption or load balancing across multiple queues.
Unlike these systems, Kafka can preserve the exact order of each user’s
data by grouping messages by user ID. This ensures strict per-user
ordering even under high-frequency, large-scale streaming workloads.
This requirement constrained the choice of alternative messaging sys-
tems for AffectStream, with Kafka emerging as the optimal architecture

Table 1
Kafka terminology.
 Term Description
 Broker A Kafka server storing data and serving

producers/consumers.

 Topic A named feed where records are published.
 Partition A division of a topic’s log for parallel processing.
 Producer A client publishing records to Kafka topics.
 Consumer A Client reading records from Kafka topics.
 Consumer Group A group of consumers that work together to

consume data from a set of topics.

 Cluster A group of brokers working together.
 Replication The process of duplicating data across brokers for

fault tolerance.

 Throughput The amount of data processed in a given period.
 Latency The time for a record to travel from producer to

consumer.

 Stream Processing A real-time processing of continuous data from a
topic.

to satisfy both the performance and ordering guarantees necessary for
real-time affect monitoring.

Therefore, this paper proposes AffectStream, a real-time affect mon-
itoring system built on a Kafka-based architecture. The system enables
real-time affect tracking and is designed to be highly adaptable across
various applications. It leverages a real-time distributed system to
handle sensor data collection and storage in an end-to-end manner
within a cloud environment. AffectStream can reliably process sen-
sor data without performance degradation, even when multiple users
access it simultaneously. Unlike conventional systems that classify emo-
tions solely based on collected data, AffectStream integrates a real-time
distributed framework to seamlessly manage processes from data col-
lection to emotional classification within a cloud-based environment.
By applying AffectStream in various fields, including education, health-
care, customer service, and psychological therapy, we can understand
users’ emotional states in real time and provide customized responses
accordingly. The following sections will provide a detailed introduction
to the architecture and applications of AffectStream.

2. Software description

AffectStream supports an end-to-end pipeline for real-time affect
analysis, from sensor data collection to modeling and management. It
operates on a Kafka-based cloud service and is designed to enable real-
time classification of personalized models as well as real-time affect
recognition in the workflow of Fig. 2. In this section, we provide an
overview of AffectStream. For detailed explanations, please refer to our
GitHub repository.

2.1. Software architecture

AffectStream is built on Kafka, designed to support parallel data
processing. The entire architecture operates in a cloud environment for
increased flexibility in case of more sensors and users.

2.1.1. Basic architecture illustration
Kafka is based on a pub/sub architecture, where the producer acts as

the publisher and the consumer acts as the subscriber. Fig. 3 illustrates
the basic structure and Table 1 summarizes the terminologies of Kafka.
The producer is the client that sends data received from users (i.e., wear-
able or IoT sensor devices) to the broker in message units. Each data
record contains a key, value, timestamp, and optional metadata. After
hash processing, the data is serialized before being sent as messages
to the broker. The broker stores the data published by the producer
and provides the requested data to the consumer, thus managing the
storage of records. Producers publish data to topics, which brokers
2

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
Fig. 2. The architecture of AffectStream.

Fig. 3. The architecture of Kafka.

organize into partitions. These partitions are distributed across multi-
ple brokers, enabling scalable and fault-tolerant storage. Scalability is
achieved by distributing partitions across brokers, allowing the system
to handle large data volumes efficiently. Fault tolerance is ensured
through replication: partitions are replicated across multiple brokers
in a cluster, so even if one broker fails, data remains accessible. This
architecture allows Kafka to maintain high availability and reliability in
data-intensive environments. The consumer is the client that consumes
the records generated by the producer, processing the records received.

The operation of Kafka-based AffectStream is as follows (see Fig. 3).
The producer (client side) creates records and uses a hash function to
determine the partition where the record will be stored. Records with
the same key are processed sequentially, and after hashing, they are
serialized and sent to the broker. The broker uses the key from the
producer to partition the records and then store them in the appropriate
location. When a consumer sends a request, the broker retrieves the
relevant records and sends them to the consumer. Within the same
partition, the order of the data is guaranteed, allowing for data stream-
ing. Records arriving at the consumer undergo deserialization before
being utilized in the application. Following Kafka’s basic operation
principles, consumers within a single consumer group cannot read the
same partition of the topic, which allows the system to be designed so
that specific data can be read appropriately by designated applications.

2.1.2. Rationales for core elements of affectstream
Kafka-based pub/sub architecture. Kafka is selected because it can han-
dle large volumes of sensor data by processing it in parallel. This is
achieved by partitioning the data, which distributes the load across

multiple brokers to prevent overload and reduce latency, making real-
time services possible. Kafka also excels at managing time-series data,
where the order of messages is important. By partitioning messages
and preserving their order, Kafka facilitates smooth data streaming for
machine learning models. Additionally, Kafka provides reliable data
delivery through data replication, ensuring continuous service even if
a subset of brokers fails.
Cloud-based scalable computing. AffectStream works in a cloud environ-
ment. Cloud services are easy to set up and highly scalable, enabling
rapid adjustments to the required resources. In addition, the cloud
environment facilitates the management and monitoring of remote
device life cycles. Furthermore, data stored and processed in the cloud
can be accessed from anywhere, improving data mobility. High-speed
networks and data transfer technologies enable real-time data transmis-
sion, supporting the effective processing of sensing data and enabling
quick decision-making.
Sensor data schema registry. For efficient processing of sensed data,
AffectStream is designed for each component of the system to check the
structure and format of the sensor data through a predefined schema
in the schema registry. This allows for parallel construction of various
data fields, making it easy to modify if the types of data change. Such
flexibility facilitates the scalability and maintenance of the system.

2.2. Software functionalities

This section outlines key components and their roles in the work-
flow.

Producer. The producer in AffectStream is an API server that transmits
user sensor data from various sensors to the broker. Multiple producer
pods use a load balancer to distribute user data and manage traffic
evenly. Data is collected from sensors and sent in predefined segments,
with the producer using a user ID as the key for the hash function to
assign partitions. Records with the same key are stored sequentially
in the same partition, ensuring that data from the same user is stored
sequentially in the same partition. The data is then serialized based on
the schema defined in the Schema Registry before transmission to the
broker. Note that the Schema Registry manages data schema, allowing
producers and consumers to share a common format for serialization
and deserialization.
Broker. The broker in AffectStream stores sensor data in partitions
based on the key and transmits it to consumers. Partitioning is per-
formed to ensure that the data from all users is evenly distributed
across the partitions. Kafka maintains order within partitions, ensuring
sequential storage of a user’s data. Additionally, data replication across
3

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
multiple brokers enhances system reliability despite failures. By using
the user ID as the key in the hash function, the producer ensures that
data from the same user is stored in the same partition of the broker.
In AffectStream, the number of consumer pods on Kubernetes matches
the number of broker partitions, allowing Kafka to guarantee the order
of data for each person within the same partition. However, uneven user
activity can cause partition skew, leading to overloaded partitions and
increased latency. To address this, AffectStream can employ partition
scaling and user-level partition redistribution, enabling balanced load
distribution while preserving the one-to-one mapping between parti-
tions and consumers. This maintains per-user data ordering and ensures
scalable, low-latency real-time affect monitoring.

Consumer. A consumer group in AffectStream has multiple consumers
reading data from the same topic. Each consumer subscribes to specific
partitions, ensuring exclusive processing per partition. Matching the
number of consumers to partitions in the broker assigns each user’s
data consistently to one consumer, ensuring sequential processing and
the order of each user’s data.

Each consumer pod independently processes and analyzes data in
real time through three steps. (1) Deserialization parses data using
the schema defined in the Schema Registry for structured formatting.
(2) Feature extraction applies a sliding window, dividing the incoming
data stream into fixed-size segments (windows) and overlapping inter-
vals that shift forward by a set step size. Through this segmentation,
user-specific features can be extracted. (3) Affect classification uses
extracted features and a pre-trained model for continuous, real-time
affect state detection.

2.3. Implementation

The producer, consumer, and simulator were deployed on Kuber-
netes using Amazon Web Services (AWS) [20]. Kubernetes is an open-
source container orchestration platform that automates the deploy-
ment, scaling, and management of containerized applications. It also
supports various cloud resources and infrastructures for the Kafka sys-
tem [21–23]. The producer was implemented based on a Spring-based
API server that handles data transmission to the broker.

AffectStream secures sensitive physiological data using SCRAM-SHA-
512 authentication within the Simple Authentication and Security
Layer (SASL) framework, supported by AWS Secrets Manager. It runs
in multiple Virtual Private Cloud (VPC) private networks with Amazon
Elastic Compute Cloud (Amazon EC2) security groups for access con-
trol. Data in transit is encrypted via Transport Layer Security (TLS) be-
tween brokers and clients, with configurable encryption options. These
measures ensure strong data protection suitable for privacy-sensitive
applications like healthcare.

3. Illustrative examples

As an example use case, we selected a scenario where AffectStream
is implemented to detect stress [24–26] of call agents at a typical call
center with around 100 employees. We set up the evaluation environ-
ment using widely used datasets for stress detection, and the system
was tested for real-time stress detection in this scenario. Note that
our evaluation focuses on validating the performance and scalability
of AffectStream itself, rather than directly measuring stress reduction
or collecting user feedback in the call center setting. Our evaluation
scenario is based on the prior research that has demonstrated that just-
in-time (JIT) personalized interventions and data-driven feedback can
positively impact stress management and user experience [7,27–30].
These works support the potential of real-time, personalized affective
feedback, which AffectStream is designed to enable by providing a
scalable and low-latency data streaming platform.

Table 2
System configuration for trace-based evaluation. vCPU (virtual CPU) represents
a virtualized processing unit assigned to instances, where 1 vCPU = 1000 m
in Kubernetes.
 Components Configurations
 Producer 10 * {1 vCPU, 4 GiB memory}
 Broker 3 * {2 vCPUs, 2 GiB memory}, 12 partitions
 Consumer 12 * {1 vCPU, 1.5 GiB memory}
 Load test simulator 6 * {1 vCPU, 2 GiB memory}

Table 3
Three trace datasets. SR indicates the sampling rate of each data.
 Dataset Wearable device Data SR (Hz)

WESAD RespiBAN

ACC

700

 TEMP
 EMG
 EDA
 ECG
 RESP

AMIGOS

Emotiv EPOC Neuro headset EEG 128
 the Shimmer 2R4 platform ECG 256
 the Shimmer 2R platform GSR 128

GalaxyPPG

Empatica E4
ACC 32

 BVP 64
 HR 1
 TEMP 4

Galaxy Watch 5
ACC 25

 HR 1
 PPG 25
 SkinTemp 1/60

Polar H10
ACC 200

 ECG 130
 HR 1

3.1. Trace-based evaluation setup

System configuration. To evaluate the system’s performance under real-
world conditions, we deployed the producer, broker, consumer, and
load test simulator on a distributed infrastructure. Table 2 summarizes
the system configuration used for trace-based evaluation. Similar to a
prior work [31], the system consisted of 10 producer instances, each
with 1 vCPU (virtual CPU) and 4 GiB memory, responsible for handling
high-frequency sensor data ingestion. The broker was deployed with
3 instances, each having 2 vCPUs and 2 GiB memory, and configured
with 12 partitions. The consumer consisted of 12 instances, each with 1
vCPU and 1.5 GiB memory, processing incoming messages in parallel.
Additionally, 6 load test simulator worker instances, each with 1 vCPU
and 2 GiB memory, were used to generate traffic, simulating real-world
workloads.

Trace datasets. We used three multimodal physiological sensor datasets
to evaluate the generalizability of our approach: WESAD [32], AMI-
GOS [33], and GalaxyPPG [34]. Details of the sensing modalities,
sampling rates, and experimental protocols are summarized in Table
3.

Since AffectStream aims to detect stress for individual users, we
added a unique user identifier (UUID) to each data record via Python’s
uuid.uuid4() method. Using random numbers, it produces 128 bit
identifiers with unique possibilities 2122, effectively eliminating the risk
of collision. This allows the system to analyze stress patterns on a
per-user basis and supports real-time stress monitoring for multiple
users, as required in scenarios such as call centers. Nonetheless, uneven
user activity may cause partition skew and overload some consumers.
Mitigation strategies such as dynamic partition scaling and user reas-
signment help balance load while maintaining data consistency and low
latency.
4

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
Fig. 4. Trace-based evaluation setup for load testing.

Sensor data generator. Fig. 4 illustrates a simulation implemented using
Locust [35], an open-source tool for load testing of the system using
HTTP and other protocols, to generate traffic for producers that closely
resembles real-world scenarios. In this simulation, a total of 100 users
were simulated by configuring Locust to spawn virtual users at a rate of
20 users per second. Sensor data was transmitted at the sampling rates
specified for each sensor in the corresponding datasets (Table 3), with
each segment spanning 1 s to the producer via POST.
Consumer of AffectStream. A sliding window [36] was applied to per-
form feature extraction in the consumers of AffectStream, with a win-
dow size of 2s and an overlap of 1s.

3.2. Functionality evaluation of AffectStream

This section evaluates three key functionalities of AffectStream:
(1) validating schema and maintaining data consistency, (2) enabling
real-time personalized affect classification, and (3) ensuring data order
during processing. These were evaluated through latency, throughput,
and metadata analysis.
Schema validation and data consistency. The schema defines data struc-
ture and types, ensuring that all messages adhere to a predefined
format. AWS Glue Schema Registry is used to enforce schema vali-
dation during serialization and deserialization between producers and
consumers. The validation process includes format verification, field
presence checks, and data type validation to prevent schema violations.
Producers serialize data according to the registered schema before
sending it to the broker, and consumers deserialize the data while
verifying its integrity against the schema. Inconsistent or incompatible
data is rejected during this process, ensuring data consistency across
the system.

We also measured the serialization overhead introduced by integrat-
ing AWS Glue Schema Registry with Kafka and found it to be negligible
– less than 1.43% of total end-to-end latency of AffectStream – and
thus it did not significantly affect the overall performance trends of the
system.

Personal affect classification in real time. AffectStream’s capability to
support real-time personalized affect classification was evaluated using
end-to-end pipeline (E2E) latency and throughput. E2E latency, from
data generation in the simulator to classification completion in the con-
sumer, includes transmission through the Producer–Broker–Consumer
pipeline. The throughput is the number of records processed per sec-
ond. Timestamps recorded at data generation completion and clas-
sification completion provided the basis for calculating latency and
throughput. Fig. 5 shows the latency results for each dataset, verifying
low-latency operation. In the WESAD dataset, the mean latency was
353.14ms and the 99th percentile latency was 821.02ms. The AMIGOS
dataset shows a mean latency of 98.14ms and a 99th percentile latency

Table 4
Sustainable workload performance for three datasets under varying numbers
of concurrent users. # Users indicates the number of concurrent users.
 # Users Latency Throughput
 Mean (ms) 99% percentile (ms) Mean (records/s)
 100 353.14 821.02 20.02
 500 1,279.92 4,002.0 19.97
 1,000 38,262.82 200,664.16 16.77

(a) WESAD dataset.
 # Users Latency Throughput
 Mean (ms) 99% percentile (ms) Mean (records/s)
 100 98.14 256.0 20.0
 500 332.12 820.0 20.01
 1,000 439.84 1,343.0 20.0

(b) AMIGOS dataset.
 # Users Latency Throughput
 Mean (ms) 99% percentile (ms) Mean (records/s)
 100 55.89 141.0 20.0
 500 296.39 750.0 20.0
 1,000 317.59 989.0 20.0

(c) GalaxyPPG dataset.

of 256.0ms, similar to the GalaxyPPG dataset, which has a mean latency
of 55.89ms and a 99th percentile latency of 141.0ms. Fig. 6 confirms no
data loss, as it matches Locust’s 20 users/s spawn rate for all datasets,
demonstrating robustness and scalability.
Data order guarantee. To maintain data order, each message includes
a user ID, timestamp, and offset value. The offset is a unique identifier
assigned to each message within a partition, incrementing sequentially
as new messages arrive. The consumer processes messages in order by
tracking offsets, ensuring that records are consumed in the same se-
quence as they were produced. The experimental results were validated
by checking that all messages belonging to the same user were in the
correct order within a partition.

3.3. Trade-offs of kafka

This section evaluates the maximum workload that AffectStream can
sustain while maintaining acceptable latency and throughput. We focus
on identifying the load threshold beyond which performance degra-
dation becomes significant, as well as analyzing the operational im-
plications of approaching this limit. The evaluation combines queuing
theory analysis with empirical measurements across multiple datasets.
Sustainable workloads. In streaming data pipelines, all queuing systems
eventually face performance bottlenecks as the input load increases
beyond the processing capacity of the deployed infrastructure. This be-
havior aligns with queuing theory: in an M/M/1 model [37], as server
utilization 𝜌 approaches 1, the expected delay grows asymptotically to
infinity. In practice, once broker I/O capacity or consumer fetch rates
are saturated, queue backlogs grow without bound, and if sustained,
can lead to disk exhaustion and forced broker shutdowns.

To analyze AffectStream’s sustainable workload, we incrementally
increased the number of concurrent users while keeping the per-user
data generation rate constant at each dataset’s native sampling rates
(Table 3). For each configuration, we measured the end-to-end mean
latency, the 99th percentile latency, and the average throughput to
identify the load threshold at which performance degradation becomes
significant.

Table 4 shows the performance of AffectStream with 100, 500,
and 1,000 concurrent users for each dataset. When using the WESAD
dataset, which contains sensor data with the highest sampling rate,
AffectStream exhibited latency exceeding 1,000ms with more than 500
concurrent users, and throughput dropped below 20.0 records/s. For
5

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
Fig. 5. End-to-end latency distribution for each dataset.

the AMIGOS and GalaxyPPG datasets, no significant increase in latency
or decrease in throughput was observed due to the relatively low sam-
pling rates of their sensor data. These results indicate that AffectStream
can operate stably when collecting sensor data similar to the WESAD
dataset with fewer than 500 concurrent users.
Operational trade-offs. While AffectStream achieves low-latency and
stable throughput under normal workloads, operating a Kafka-based
streaming pipeline in production entails inherent trade-offs in man-
agement complexity, cost, and performance variability under different
loads. Kafka cluster management requires continuous monitoring and

tuning of broker replication, partition assignments, and leader elections
to ensure fault tolerance and balanced throughput. Furthermore, under
extreme workloads, traffic surges can saturate broker I/O capacity and
consumer fetch rates, leading to queue backlogs that grow without
bound. If queue depths exceed available disk capacity, brokers are
forced to shut down, interrupting processing entirely. Thus, to avoid
reaching the workload limit, it is required to scale broker instances
or increase partition counts, but this comes at the cost of higher
cloud infrastructure expenses and increased operational overhead; for
example, Amazon AWS charges per broker instance, data storage,
and transfer amount. These trade-offs highlight that achieving high
6

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
Fig. 6. Throughput averaged over 5-s intervals for each dataset.

performance in a cloud-deployed streaming system requires not only
optimizing throughput and latency, but also balancing cost efficiency.

4. Impact

AffectStream, a system that monitors users’ affect states in real
time using wearable sensor data, can be used to realize affective com-
puting applications across various domains such as empowerment at
workplaces, education, military training, and healthcare. For example,

integrating AffectStream with voice assistants or chatbots in a call center
setting can enable real-time detection of customer dissatisfaction or
confusion, improving interactions by responding appropriately [38,39].
This would enhance the user experience and contribute to improved
service quality. Notably, there is significant potential for integrating
AffectStream into systems designed for education. Previous studies have
shown that emotion recognition software in education can maximize
learning outcomes by adjusting the difficulty of the material or pro-
viding encouragement based on the student’s emotional state [4,8,40].
7

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
Table 5
Integration plan for various domains.
 Domain Methods Key challenges
 Education API connection to LMS,

WebSocket for real-time
dashboard updates

Classroom dynamics tolerance,
supporting variable network
conditions in remote learning

 Healthcare FHIR integration with
EMRs, secure VPN channel

HIPAA/GDPR compliance,
maintaining data integrity
during asynchronous updates

 Customer
Service

Kafka-to-CRM pipeline,
integration with chatbot
frameworks

Handling peak-hour traffic
spikes, maintaining low
response time during high
concurrency

 Psychological
Therapy

Secure connection for
remote sessions,
emotion-aware feedback API

Ensuring stable multimodal
sensing, privacy preservation in
sensitive contexts

By combining such software with AffectStream, which monitors real-
time changes in a student’s emotional state using multimodal data,
it is possible to meet individual emotional needs and create a more
effective learning environment. This approach is beneficial in mili-
tary and medical training, where trainees often practice in simulated
high-stress conditions [5,9]. With AffectStream, trainers can adjust the
training process in response to trainees’ emotional states, providing
just-in-time interventions to help them manage stress more effectively.
Given the recent trend of actively introducing virtual and augmented
reality into simulation training in these fields [41–43], systems for real-
time affect recognition such as AffectStream are essential. Further, when
combined with AI-driven human–robot interaction (HRI), it can offer
more natural interactions [44,45].

To concretize the integration potential across domains and ad-
dress domain-specific challenges, Table 5 outlines practical integra-
tion methods and considerations. For example, in education, Affect-
Stream can link to learning management systems (LMS) via standard-
ized APIs and stream real-time dashboards to adapt content to students’
emotional states. In healthcare, it can connect to electronic medical
records (EMRs) via FHIR [46] APIs and transmit biosignals securely
to ensure regulatory compliance. In customer service, a Kafka-based
pipeline can interface with customer relationship management (CRM)
or chatbot systems for rapid detection and response to customer dis-
satisfaction. In psychological therapy, secure connections can support
remote multimodal sensing and deliver emotion-aware feedback while
preserving privacy.

5. Conclusions

We proposed AffectStream, a real-time affect monitoring system that
uses a Kafka-based cloud infrastructure for large-scale affect analysis
in real time. Notably, Kafka-based pub/sub architecture in cloud en-
vironments supports the real-time processing of large-scale user data
through a high-performance distributed system, effectively detecting
emotional states such as stress. We demonstrated the applicability of
AffectStream for real-time affect recognition by conducting a trace-
based evaluation with data from wearable sensors. AffectStream has the
potential to deliver a more personalized user experience across fields
such as education, healthcare, customer service, and military training,
thereby enhancing learning efficiency, user satisfaction, and emotional
responsiveness. To this end, future work should explore extending Af-
fectStream to include additional modalities that are active in emotion
detection research, such as audio and visual data. Systems should be
developed to support these modalities (e.g., edge computing based on
device processing to enhance scalability with a growing number of
users and modalities). Furthermore, such a system is recommended to
be validated in real-world environments.

CRediT authorship contribution statement

Jeonghyun Kim: Writing – original draft, Writing – review & edit-
ing, Conceptualization, Software. Duri Lee: Writing – review & editing,
Supervision. Uichin Lee: Writing – review & editing, Supervision,
Conceptualization, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) grant funded by
the Korean government (MSIT) (No. 2022-0-00064, Development of
Human Digital Twin Technologies for Prediction and Management of
Emotion Workers’ Mental Health Risks).

References

[1] Park CY, Cha N, Kang S, Kim A, Khandoker AH, Hadjileontiadis L, et al. K-
emocon, a multimodal sensor dataset for continuous emotion recognition in
naturalistic conversations. Sci Data 2020;7(1):293.

[2] Hovsepian K, Al’Absi M, Ertin E, Kamarck T, Nakajima M, Kumar S. Cstress:
towards a gold standard for continuous stress assessment in the mobile envi-
ronment. In: Proceedings of the 2015 ACM international joint conference on
pervasive and ubiquitous computing. 2015, p. 493–504.

[3] Zhang P, Jung G, Alikhanov J, Ahmed U, Lee U. A reproducible stress predic-
tion pipeline with mobile sensor data. Proc the ACM Interact Mob Wearable
Ubiquitous Technol 2024;8(3):1–35.

[4] Sarmiento-Calisaya E, Ccori PC, Parari AC. An emotion-aware persuasive archi-
tecture to support challenging classroom situations. In: 2022 IEEE international
conference on consumer electronics. IEEE; 2022, p. 1–2.

[5] Linssen L, Landman A, van Baardewijk JU, Bottenheft C, Binsch O. Us-
ing accelerometry and heart rate data for real-time monitoring of soldiers’
stress in a dynamic military virtual reality scenario. Multimedia Tools Appl
2022;81(17):24739–56.

[6] Elvitigala DS, Scholl PM, Suriyaarachchi H, Dissanayake V, Nanayakkara S.
Stressshoe: a diy toolkit for just-in-time personalised stress interventions for office
workers performing sedentary tasks. In: Proceedings of the 23rd international
conference on mobile human-computer interaction. 2021, p. 1–14.

[7] Rivera-Pelayo V, Fessl A, Müller L, Pammer V. Introducing mood self-tracking at
work: Empirical insights from call centers. ACM Trans Computer-Human Interact
(TOCHI) 2017;24(1):1–28.

[8] Ez-Zaouia M, Tabard A, Lavoué E. Emodash: A dashboard supporting retro-
spective awareness of emotions in online learning. Int J Hum-Comput Stud
2020;139:102411.

[9] Lai K, Yanushkevich SN, Shmerko VP. Intelligent stress monitoring assistant for
first responders. IEEE Access 2021;9:25314–29.

[10] McDuff D, Rowan K, Choudhury P, Wolk J, Pham T, Czerwinski M. A multimodal
emotion sensing platform for building emotion-aware applications. 2019, arXiv
preprint arXiv:1903.12133.

[11] Choksi K, Chen H, Joshi K, Jade S, Nirjon S, Lin S. Sensemo: Enabling affective
learning through real-time emotion recognition with smartwatches. 2024, arXiv
preprint arXiv:2407.09911.

[12] Lohitha NS, Pounambal M. Integrated publish/subscribe and push-pull method
for cloud based iot framework for real time data processing. Meas Sensors
2023;27:100699.

[13] Haque KN, Islam J, Ahmad I, Harjula E. Decentralized pub/sub architecture for
real-time remote patient monitoring: A feasibility study. In: Nordic conference
on digital health and wireless solutions. Springer; 2024, p. 48–65.

[14] Movesense. Wearable sensor — movesense. 2023, https://www.movesense.com/.
(Accessed 11 August 2025).

[15] Maharjan R, Chy MSH, Arju MA, Cerny T. Benchmarking message queues.
Telecom 2023;4:298–312.

[16] Chy MSH, Arju MAR, Tella SM, Cerny T. Comparative evaluation of java virtual
machine-based message queue services: A study on kafka, artemis, pulsar, and
rocketmq. Electronics 2023;12(23):4792.

[17] Foundation AS. Apache kafka. 2012, https://kafka.apache.org/, accessed
.(Accessed 11 August 2025).

[18] RabbitM Q. Queues. 2025, https://www.rabbitmq.com/docs/queues. (Accessed
11 August 2025).
8

http://refhub.elsevier.com/S2352-7110(25)00291-2/sb1
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb1
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb1
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb1
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb1
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb2
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb3
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb3
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb3
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb3
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb3
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb4
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb4
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb4
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb4
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb4
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb5
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb6
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb7
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb7
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb7
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb7
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb7
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb8
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb8
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb8
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb8
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb8
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb9
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb9
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb9
http://arxiv.org/abs/1903.12133
http://arxiv.org/abs/2407.09911
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb12
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb12
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb12
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb12
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb12
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb13
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb13
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb13
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb13
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb13
https://www.movesense.com/
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb15
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb15
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb15
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb16
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb16
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb16
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb16
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb16
https://kafka.apache.org/
https://www.rabbitmq.com/docs/queues

Jeonghyun Kim et al. SoftwareX 31 (2025) 102325
[19] Apache. Activemq. 2025, https://activemq.apache.org/components/classic/
documentation/how-do-i-preserve-order-of-messages .(Accessed 11 August
2025).

[20] Amazon. Amazon web service (aws). 2024, https://aws.amazon.com. (Accessed
11 August 2025).

[21] Wu H, Shang Z, Wolter K. Performance prediction for the apache kafka
messaging system. In: 2019 IEEE 21st international conference on high per-
formance computing and communications; IEEE 17th international conference
on smart city; IEEE 5th international conference on data science and systems
(HPCC/smartCity/DSS). IEEE; 2019, p. 154–61.

[22] George J. Build a realtime data pipeline: Scalable application data analytics on
amazon web services (aws). JETIR 2024.

[23] Boscain S. Aws cloud: infrastructure, devops techniques, state of art (Ph.D.
thesis), 2023, Politecnico di Torino.

[24] Yurtay Y, Demirci H, Tiryaki H, Altun T. Emotion recognition on call center
voice data. Appl Sci 2024;14(20):9458.

[25] Hernandez J, Morris RR, Picard RW. Call center stress recognition with
person-specific models. In: Affective computing and intelligent interaction: 4th
international conference, ACII 2011, memphis, TN, USA, October (2011) 9–12,
proceedings, part i 4. Springer; 2011, p. 125–34.

[26] Bromuri S, Henkel AP, Iren D, Urovi V. Using ai to predict service agent stress
from emotion patterns in service interactions. J Serv Manag 2021;32(4):581–611.

[27] Howe E, Suh J, Bin Morshed M, McDuff D, Rowan K, Hernandez J, et al. Design
of digital workplace stress-reduction intervention systems: Effects of intervention
type and timing. In: Proceedings of the 2022 CHI conference on human factors
in computing systems, association for computing machinery, new york, NY, USA.
2022, p. 1–16.

[28] Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, et
al. Just-in-time adaptive interventions (jitais) in mobile health: key components
and design principles for ongoing health behavior support. Ann Behav Med
2018;52(6):446–62.

[29] Sano A, Johns P, Czerwinski M. Designing opportune stress intervention delivery
timing using multi-modal data. In: 2017 seventh international conference on
affective computing and intelligent interaction. IEEE; 2017, p. 346–53.

[30] Neupane S, Saha M, Ali N, Hnat T, Samiei SA, Nandugudi A, et al. Momentary
stressor logging and reflective visualizations: Implications for stress management
with wearables. In: Proceedings of the CHI conference on human factors in
computing systems, association for computing machinery, new york, NY, USA.
2024, p. 1–19.

[31] Raptis TP, Passarella A. On efficiently partitioning a topic in apache kafka. In:
2022 international conference on computer, information and telecommunication
systems. IEEE; 2022, p. 1–8.

[32] Schmidt P, Reiss A, Duerichen R, Marberger C, Van Laerhoven K, wesad In-
troducing. A multimodal dataset for wearable stress and affect detection. In:
Proceedings of the 20th ACM international conference on multimodal interaction.
2018, p. 400–8.

[33] Miranda-Correa JA, Abadi MK, Sebe N, Patras I. Amigos: A dataset for affect,
personality and mood research on individuals and groups. IEEE Trans Affect
Comput 2018;12(2):479–93.

[34] Park S, Zheng D, Lee U. A ppg signal dataset collected in semi-naturalistic
settings using galaxy watch. Sci Data 2025;12(1):892.

[35] Locust. Locust: An open source load testing tool. 2020, https://locust.io.
(Accessed 11 August 2025).

[36] Datar M, Gionis A, Indyk P, Motwani R. Maintaining stream statistics over sliding
windows. SIAM J Comput 2002;31(6):1794–813.

[37] Thomas MU, systems Queueing. Volume 1: Theory (leonard kleinrock). SIAM
Rev 1976;18(3):512–4.

[38] Liu C, Agrawal P, Sarkar N, Chen S. Dynamic difficulty adjustment in computer
games through real-time anxiety-based affective feedback. Int J Hum-Comput
Interact 2009;25(6):506–29.

[39] Henkel AP, Bromuri S, Iren D, Urovi V, human Half. Half machine–augmenting
service employees with ai for interpersonal emotion regulation. J Serv Manag
2020;31(2):247–65.

[40] Wu C-H, Huang Y-M, Hwang J-P. Review of affective computing in educa-
tion/learning: Trends and challenges. Br J Educ Technol 2016;47(6):1304–23.

[41] Onu P, Pradhan A, Mbohwa C. Potential to use metaverse for future teaching
and learning. Educ Inf Technol 2024;29(7):8893–924.

[42] Kuleto V, Ilić MP, Ranković M, Radaković M, Simović A. Augmented and virtual
reality in the metaverse context: The impact on the future of work, education,
and social interaction. In: Augmented and virtual reality in the metaverse.
Springer; 2024, p. 3–24.

[43] Yu D. Designing effective learning environments in the educational metaverse:
The role of augmented and virtual reality. In: Augmented and virtual reality in
the metaverse. Springer; 2024, p. 81–100.

[44] Ottoni LTC, d. J. F. Cerqueira J. A systematic review of human–robot interaction:
The use of emotions and the evaluation of their performance. Int J Soc Robot
2024;1–20.

[45] Obaigbena A, Lottu OA, Ugwuanyi ED, Jacks BS, Sodiya EO, Daraojimba OD. Ai
and human–robot interaction: A review of recent advances and challenges. GSC
Adv Res Rev 2024;18(2):321–30.

[46] HL7. Hl7 fhir v5.0.0. 2023, https://hl7.org/fhir/. (Accessed 11 August 2025).
9

https://activemq.apache.org/components/classic/documentation/how-do-i-preserve-order-of-messages
https://activemq.apache.org/components/classic/documentation/how-do-i-preserve-order-of-messages
https://activemq.apache.org/components/classic/documentation/how-do-i-preserve-order-of-messages
https://aws.amazon.com
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb21
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb22
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb22
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb22
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb23
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb23
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb23
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb24
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb24
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb24
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb25
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb26
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb26
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb26
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb27
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb28
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb29
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb30
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb31
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb31
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb31
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb31
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb31
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb32
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb33
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb33
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb33
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb33
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb33
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb34
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb34
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb34
https://locust.io
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb36
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb36
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb36
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb37
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb37
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb37
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb38
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb38
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb38
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb38
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb38
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb39
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb39
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb39
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb39
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb39
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb40
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb40
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb40
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb41
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb41
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb41
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb42
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb43
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb43
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb43
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb43
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb43
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb44
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb44
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb44
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb44
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb44
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb45
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb45
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb45
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb45
http://refhub.elsevier.com/S2352-7110(25)00291-2/sb45
https://hl7.org/fhir/

	AffectStream: Kafka-based real-time affect monitoring system using wearable sensors
	Motivation and significance
	Software description
	Software architecture
	Basic architecture illustration
	Rationales for core elements of AffectStream

	Software functionalities
	Implementation

	Illustrative examples
	Trace-based evaluation setup
	Functionality evaluation of AffectStream
	Trade-offs of Kafka

	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

