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 A B S T R A C T

Real-time affect monitoring is essential for personalized and adaptive applications in fields like education, 
healthcare, and customer service. However, existing systems often struggle with scalability and low-latency 
requirements for processing high-frequency sensor data. To address these challenges, we propose AffectStream, 
a Kafka-based real-time affect monitoring system that processes wearable sensor data through a cloud-based 
pub/sub architecture to the applications. AffectStream ensures scalability, fault tolerance, and personalized 
emotional state analysis. Its robust performance is demonstrated through trace-based evaluations using three 
public datasets (i.e., WESAD, AMIGOS, and GalaxyPPG). This open-source framework advances real-time 
emotion recognition, paving the way for large-scale affective computing applications.
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. Motivation and significance

Real-time affect monitoring refers to the process of tracking and 
nalyzing a user’s affect state (e.g., feelings, moods, and stress levels) 
ia real-time sensor data analysis. Affect monitoring involves collecting 
arious behavioral (e.g., facial expression and voice [1]), physiological 
e.g., heart rate, skin conductance [2]), and psychological sensor data 
e.g., self-reported stress and mood [3]) to monitor the current affect 
tate using wearable sensors (e.g., Samsung Watch and Google Fitbit).
Understanding and responding to users’ affect states is important, as 

t allows for more personalized and adaptive interactions across various 
pplications. Personalized and adaptive services using real-time affect 
onitoring can be applied in multiple fields, such as education [4], mil-
tary training [5], healthcare [6], and empowerment at workplaces [7]. 

∗ Corresponding author.
E-mail addresses: jeonghyun.kim@kaist.ac.kr (Jeonghyun Kim), duri.lee@kaist.ac.kr (Duri Lee), uclee@kaist.ac.kr (Uichin Lee).

For example, educational software can monitor students’ cognitive and 
emotional state, and dynamically adjust the difficulty of the content or 
offer assistance that is appropriate to their emotions and concentration 
levels to maximize learning effectiveness [4,8]. In military and medical 
training, it could provide a targeted intervention by automatically 
monitoring trainees’ affect condition in highly stressful environments, 
helping the trainees manage their emotions [5,9].

In general, a real-time affect monitoring system consists of four 
continuous and iterative stages: (1) data acquisition, (2) data streaming, 
(3) data processing, and (4) data storage (see Fig.  1) [10,11]. In the 
data acquisition stage, user data is collected in real time from one or 
multiple wearable devices (e.g., smartwatch and chest band). During 
the data streaming stage, large volumes of sensor data are transmitted 
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Fig. 1. Four stages of real-time affect monitoring system.

and processed in real time, requiring mechanisms to ensure data order-
ing and integrity. In the data processing stage, features are extracted 
and machine learning (ML) models are applied to estimate users’ affect 
states from the collected data in real time. In the data storage stage, 
both the raw sensor data and the inferred affect states are stored in a 
large-scale storage system (e.g., cloud service) for future use.

To perform such complex data processing for a real-time affect mon-
itoring system, a scalable open-source platform for real-time sensor data 
processing is necessary. Among well-known architectures, in this work, 
we use the publisher/subscriber (pub/sub) architecture. The pub/sub 
architecture utilizes one of the messaging patterns that allows for loose 
coupling between publishers and subscribers. Therefore, it enhances 
the efficiency of data transmission and processing, providing scalability 
and flexibility for the system. This architecture has been widely used in 
prior studies. Lohitha et al. [12] employed a cloud-based IoT platform 
utilizing a pub/sub architecture for real-time sensor data analysis, and 
Haque et al. [13] proposed a distributed pub/sub architecture for real-
time remote patient monitoring using Movesense [14] sensor, which 
is a wearable sensor for measuring electrocardiogram (ECG), heart 
rate and movement. Various messaging systems, such as RabbitMQ, 
ActiveMQ, and Kafka, implement the pub/sub architecture. 

• RabbitMQ: A message broker based on the Advanced Message 
Queuing Protocol (AMQP), known for its reliable message queu-
ing and complex routing capabilities. Although RabbitMQ sup-
ports pub/sub messaging, its queuing system architecture is less 
suited for handling high-frequency, large-scale data streams [15].

• ActiveMQ: A Java Message Service (JMS)-supported message bro-
ker that offers both queue and pub/sub models, making it suitable 
for transactional messaging and enterprise applications [16].

• Kafka: A distributed streaming platform optimized for real-time 
data streaming and high throughput. Its architecture excels in 
log processing and scalable data pipelines [17]. Notably, Kafka 
supports excellent real-time throughput and provides superior 
performance in environments that require large-scale real-time 
data processing and streaming [15].

Compared to RabbitMQ’s queuing mechanism and ActiveMQ’s trans-
actional messaging, Kafka’s high throughput and scalability make it the 
optimal choice for real-time affect monitoring.

While prior benchmarking studies [15] have shown Kafka’s supe-
rior throughput and scalability compared to RabbitMQ and ActiveMQ, 
our system’s architecture was primarily driven by a strict functional 
requirement; i.e., per-user data ordering must be preserved across the 
entire real-time data processing pipeline. RabbitMQ and ActiveMQ 
can guarantee message order only within a single queue and under 
sequential consumption [18,19]. However, ordering may be violated 
under parallel consumption or load balancing across multiple queues. 
Unlike these systems, Kafka can preserve the exact order of each user’s 
data by grouping messages by user ID. This ensures strict per-user 
ordering even under high-frequency, large-scale streaming workloads. 
This requirement constrained the choice of alternative messaging sys-
tems for AffectStream, with Kafka emerging as the optimal architecture 

Table 1
Kafka terminology.
 Term Description  
 Broker A Kafka server storing data and serving 

producers/consumers.
 

 Topic A named feed where records are published.  
 Partition A division of a topic’s log for parallel processing.  
 Producer A client publishing records to Kafka topics.  
 Consumer A Client reading records from Kafka topics.  
 Consumer Group A group of consumers that work together to 

consume data from a set of topics.
 

 Cluster A group of brokers working together.  
 Replication The process of duplicating data across brokers for 

fault tolerance.
 

 Throughput The amount of data processed in a given period.  
 Latency The time for a record to travel from producer to 

consumer.
 

 Stream Processing A real-time processing of continuous data from a 
topic.

 

to satisfy both the performance and ordering guarantees necessary for 
real-time affect monitoring.

Therefore, this paper proposes AffectStream, a real-time affect mon-
itoring system built on a Kafka-based architecture. The system enables 
real-time affect tracking and is designed to be highly adaptable across 
various applications. It leverages a real-time distributed system to 
handle sensor data collection and storage in an end-to-end manner 
within a cloud environment. AffectStream can reliably process sen-
sor data without performance degradation, even when multiple users 
access it simultaneously. Unlike conventional systems that classify emo-
tions solely based on collected data, AffectStream integrates a real-time 
distributed framework to seamlessly manage processes from data col-
lection to emotional classification within a cloud-based environment. 
By applying AffectStream in various fields, including education, health-
care, customer service, and psychological therapy, we can understand 
users’ emotional states in real time and provide customized responses 
accordingly. The following sections will provide a detailed introduction 
to the architecture and applications of AffectStream.

2. Software description

AffectStream supports an end-to-end pipeline for real-time affect 
analysis, from sensor data collection to modeling and management. It 
operates on a Kafka-based cloud service and is designed to enable real-
time classification of personalized models as well as real-time affect 
recognition in the workflow of Fig.  2. In this section, we provide an 
overview of AffectStream. For detailed explanations, please refer to our 
GitHub repository.

2.1. Software architecture

AffectStream is built on Kafka, designed to support parallel data 
processing. The entire architecture operates in a cloud environment for 
increased flexibility in case of more sensors and users.

2.1.1. Basic architecture illustration
Kafka is based on a pub/sub architecture, where the producer acts as 

the publisher and the consumer acts as the subscriber. Fig.  3 illustrates 
the basic structure and Table  1 summarizes the terminologies of Kafka. 
The producer is the client that sends data received from users (i.e., wear-
able or IoT sensor devices) to the broker in message units. Each data 
record contains a key, value, timestamp, and optional metadata. After 
hash processing, the data is serialized before being sent as messages 
to the broker. The broker stores the data published by the producer 
and provides the requested data to the consumer, thus managing the 
storage of records. Producers publish data to topics, which brokers 
2 
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Fig. 2. The architecture of AffectStream.

Fig. 3. The architecture of Kafka.

organize into partitions. These partitions are distributed across multi-
ple brokers, enabling scalable and fault-tolerant storage. Scalability is 
achieved by distributing partitions across brokers, allowing the system 
to handle large data volumes efficiently. Fault tolerance is ensured 
through replication: partitions are replicated across multiple brokers 
in a cluster, so even if one broker fails, data remains accessible. This 
architecture allows Kafka to maintain high availability and reliability in 
data-intensive environments. The consumer is the client that consumes 
the records generated by the producer, processing the records received.

The operation of Kafka-based AffectStream is as follows (see Fig.  3). 
The producer (client side) creates records and uses a hash function to 
determine the partition where the record will be stored. Records with 
the same key are processed sequentially, and after hashing, they are 
serialized and sent to the broker. The broker uses the key from the 
producer to partition the records and then store them in the appropriate 
location. When a consumer sends a request, the broker retrieves the 
relevant records and sends them to the consumer. Within the same 
partition, the order of the data is guaranteed, allowing for data stream-
ing. Records arriving at the consumer undergo deserialization before 
being utilized in the application. Following Kafka’s basic operation 
principles, consumers within a single consumer group cannot read the 
same partition of the topic, which allows the system to be designed so 
that specific data can be read appropriately by designated applications.

2.1.2. Rationales for core elements of  affectstream
Kafka-based pub/sub architecture. Kafka is selected because it can han-
dle large volumes of sensor data by processing it in parallel. This is 
achieved by partitioning the data, which distributes the load across 

multiple brokers to prevent overload and reduce latency, making real-
time services possible. Kafka also excels at managing time-series data, 
where the order of messages is important. By partitioning messages 
and preserving their order, Kafka facilitates smooth data streaming for 
machine learning models. Additionally, Kafka provides reliable data 
delivery through data replication, ensuring continuous service even if 
a subset of brokers fails.
Cloud-based scalable computing. AffectStream works in a cloud environ-
ment. Cloud services are easy to set up and highly scalable, enabling 
rapid adjustments to the required resources. In addition, the cloud 
environment facilitates the management and monitoring of remote 
device life cycles. Furthermore, data stored and processed in the cloud 
can be accessed from anywhere, improving data mobility. High-speed 
networks and data transfer technologies enable real-time data transmis-
sion, supporting the effective processing of sensing data and enabling 
quick decision-making.
Sensor data schema registry. For efficient processing of sensed data,
AffectStream is designed for each component of the system to check the 
structure and format of the sensor data through a predefined schema 
in the schema registry. This allows for parallel construction of various 
data fields, making it easy to modify if the types of data change. Such 
flexibility facilitates the scalability and maintenance of the system.

2.2. Software functionalities

This section outlines key components and their roles in the work-
flow.

Producer. The producer in AffectStream is an API server that transmits 
user sensor data from various sensors to the broker. Multiple producer 
pods use a load balancer to distribute user data and manage traffic 
evenly. Data is collected from sensors and sent in predefined segments, 
with the producer using a user ID as the key for the hash function to 
assign partitions. Records with the same key are stored sequentially 
in the same partition, ensuring that data from the same user is stored 
sequentially in the same partition. The data is then serialized based on 
the schema defined in the Schema Registry before transmission to the 
broker. Note that the Schema Registry manages data schema, allowing 
producers and consumers to share a common format for serialization 
and deserialization.
Broker. The broker in AffectStream stores sensor data in partitions 
based on the key and transmits it to consumers. Partitioning is per-
formed to ensure that the data from all users is evenly distributed 
across the partitions. Kafka maintains order within partitions, ensuring 
sequential storage of a user’s data. Additionally, data replication across 
3 
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multiple brokers enhances system reliability despite failures. By using 
the user ID as the key in the hash function, the producer ensures that 
data from the same user is stored in the same partition of the broker. 
In AffectStream, the number of consumer pods on Kubernetes matches 
the number of broker partitions, allowing Kafka to guarantee the order 
of data for each person within the same partition. However, uneven user 
activity can cause partition skew, leading to overloaded partitions and 
increased latency. To address this, AffectStream can employ partition 
scaling and user-level partition redistribution, enabling balanced load 
distribution while preserving the one-to-one mapping between parti-
tions and consumers. This maintains per-user data ordering and ensures 
scalable, low-latency real-time affect monitoring.

Consumer. A consumer group in AffectStream has multiple consumers 
reading data from the same topic. Each consumer subscribes to specific 
partitions, ensuring exclusive processing per partition. Matching the 
number of consumers to partitions in the broker assigns each user’s 
data consistently to one consumer, ensuring sequential processing and 
the order of each user’s data.

Each consumer pod independently processes and analyzes data in 
real time through three steps. (1) Deserialization parses data using 
the schema defined in the Schema Registry for structured formatting. 
(2) Feature extraction applies a sliding window, dividing the incoming 
data stream into fixed-size segments (windows) and overlapping inter-
vals that shift forward by a set step size. Through this segmentation, 
user-specific features can be extracted. (3) Affect classification uses 
extracted features and a pre-trained model for continuous, real-time 
affect state detection.

2.3. Implementation

The producer, consumer, and simulator were deployed on Kuber-
netes using Amazon Web Services (AWS) [20]. Kubernetes is an open-
source container orchestration platform that automates the deploy-
ment, scaling, and management of containerized applications. It also 
supports various cloud resources and infrastructures for the Kafka sys-
tem [21–23]. The producer was implemented based on a Spring-based 
API server that handles data transmission to the broker.

AffectStream secures sensitive physiological data using SCRAM-SHA-
512 authentication within the Simple Authentication and Security 
Layer (SASL) framework, supported by AWS Secrets Manager. It runs 
in multiple Virtual Private Cloud (VPC) private networks with Amazon 
Elastic Compute Cloud (Amazon EC2) security groups for access con-
trol. Data in transit is encrypted via Transport Layer Security (TLS) be-
tween brokers and clients, with configurable encryption options. These 
measures ensure strong data protection suitable for privacy-sensitive 
applications like healthcare.

3. Illustrative examples

As an example use case, we selected a scenario where AffectStream
is implemented to detect stress [24–26] of call agents at a typical call 
center with around 100 employees. We set up the evaluation environ-
ment using widely used datasets for stress detection, and the system 
was tested for real-time stress detection in this scenario. Note that 
our evaluation focuses on validating the performance and scalability 
of AffectStream itself, rather than directly measuring stress reduction 
or collecting user feedback in the call center setting. Our evaluation 
scenario is based on the prior research that has demonstrated that just-
in-time (JIT) personalized interventions and data-driven feedback can 
positively impact stress management and user experience [7,27–30]. 
These works support the potential of real-time, personalized affective 
feedback, which AffectStream is designed to enable by providing a 
scalable and low-latency data streaming platform.

Table 2
System configuration for trace-based evaluation. vCPU (virtual CPU) represents 
a virtualized processing unit assigned to instances, where 1 vCPU = 1000 m 
in Kubernetes.
 Components Configurations  
 Producer 10 * {1 vCPU, 4 GiB memory}  
 Broker 3 * {2 vCPUs, 2 GiB memory}, 12 partitions 
 Consumer 12 * {1 vCPU, 1.5 GiB memory}  
 Load test simulator 6 * {1 vCPU, 2 GiB memory}  

Table 3
Three trace datasets. SR indicates the sampling rate of each data.
 Dataset Wearable device Data SR (Hz) 
 

WESAD RespiBAN

ACC

700

 
 TEMP  
 EMG  
 EDA  
 ECG  
 RESP  
 
AMIGOS

Emotiv EPOC Neuro headset EEG 128  
 the Shimmer 2R4 platform ECG 256  
 the Shimmer 2R platform GSR 128  
 

GalaxyPPG

Empatica E4
ACC 32  

 BVP 64  
 HR 1  
 TEMP 4  
 

Galaxy Watch 5
ACC 25  

 HR 1  
 PPG 25  
 SkinTemp 1/60  
 

Polar H10
ACC 200  

 ECG 130  
 HR 1  

3.1. Trace-based evaluation setup

System configuration. To evaluate the system’s performance under real-
world conditions, we deployed the producer, broker, consumer, and 
load test simulator on a distributed infrastructure. Table  2 summarizes 
the system configuration used for trace-based evaluation. Similar to a 
prior work [31], the system consisted of 10 producer instances, each 
with 1 vCPU (virtual CPU) and 4 GiB memory, responsible for handling 
high-frequency sensor data ingestion. The broker was deployed with 
3 instances, each having 2 vCPUs and 2 GiB memory, and configured 
with 12 partitions. The consumer consisted of 12 instances, each with 1 
vCPU and 1.5 GiB memory, processing incoming messages in parallel. 
Additionally, 6 load test simulator worker instances, each with 1 vCPU 
and 2 GiB memory, were used to generate traffic, simulating real-world 
workloads.

Trace datasets. We used three multimodal physiological sensor datasets 
to evaluate the generalizability of our approach: WESAD [32], AMI-
GOS [33], and GalaxyPPG [34]. Details of the sensing modalities, 
sampling rates, and experimental protocols are summarized in Table 
3.

Since AffectStream aims to detect stress for individual users, we 
added a unique user identifier (UUID) to each data record via Python’s
uuid.uuid4() method. Using random numbers, it produces 128 bit 
identifiers with unique possibilities 2122, effectively eliminating the risk 
of collision. This allows the system to analyze stress patterns on a 
per-user basis and supports real-time stress monitoring for multiple 
users, as required in scenarios such as call centers. Nonetheless, uneven 
user activity may cause partition skew and overload some consumers. 
Mitigation strategies such as dynamic partition scaling and user reas-
signment help balance load while maintaining data consistency and low 
latency.
4 
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Fig. 4. Trace-based evaluation setup for load testing.

Sensor data generator. Fig.  4 illustrates a simulation implemented using 
Locust [35], an open-source tool for load testing of the system using 
HTTP and other protocols, to generate traffic for producers that closely 
resembles real-world scenarios. In this simulation, a total of 100 users 
were simulated by configuring Locust to spawn virtual users at a rate of 
20 users per second. Sensor data was transmitted at the sampling rates 
specified for each sensor in the corresponding datasets (Table  3), with 
each segment spanning 1 s to the producer via POST.
Consumer of  AffectStream. A sliding window [36] was applied to per-
form feature extraction in the consumers of AffectStream, with a win-
dow size of 2s and an overlap of 1s.

3.2. Functionality evaluation of  AffectStream

This section evaluates three key functionalities of AffectStream: 
(1) validating schema and maintaining data consistency, (2) enabling 
real-time personalized affect classification, and (3) ensuring data order 
during processing. These were evaluated through latency, throughput, 
and metadata analysis.
Schema validation and data consistency. The schema defines data struc-
ture and types, ensuring that all messages adhere to a predefined 
format. AWS Glue Schema Registry is used to enforce schema vali-
dation during serialization and deserialization between producers and 
consumers. The validation process includes format verification, field 
presence checks, and data type validation to prevent schema violations. 
Producers serialize data according to the registered schema before 
sending it to the broker, and consumers deserialize the data while 
verifying its integrity against the schema. Inconsistent or incompatible 
data is rejected during this process, ensuring data consistency across 
the system.

We also measured the serialization overhead introduced by integrat-
ing AWS Glue Schema Registry with Kafka and found it to be negligible 
– less than 1.43% of total end-to-end latency of AffectStream – and 
thus it did not significantly affect the overall performance trends of the 
system.

Personal affect classification in real time. AffectStream’s capability to 
support real-time personalized affect classification was evaluated using 
end-to-end pipeline (E2E) latency and throughput. E2E latency, from 
data generation in the simulator to classification completion in the con-
sumer, includes transmission through the Producer–Broker–Consumer 
pipeline. The throughput is the number of records processed per sec-
ond. Timestamps recorded at data generation completion and clas-
sification completion provided the basis for calculating latency and 
throughput. Fig.  5 shows the latency results for each dataset, verifying 
low-latency operation. In the WESAD dataset, the mean latency was 
353.14ms and the 99th percentile latency was 821.02ms. The AMIGOS 
dataset shows a mean latency of 98.14ms and a 99th percentile latency 

Table 4
Sustainable workload performance for three datasets under varying numbers 
of concurrent users. # Users indicates the number of concurrent users.
 # Users Latency Throughput  
 Mean (ms) 99% percentile (ms) Mean (records/s)
 100 353.14 821.02 20.02  
 500 1,279.92 4,002.0 19.97  
 1,000 38,262.82 200,664.16 16.77  

(a) WESAD dataset.
 # Users Latency Throughput  
 Mean (ms) 99% percentile (ms) Mean (records/s)
 100 98.14 256.0 20.0  
 500 332.12 820.0 20.01  
 1,000 439.84 1,343.0 20.0  

(b) AMIGOS dataset.
 # Users Latency Throughput  
 Mean (ms) 99% percentile (ms) Mean (records/s)
 100 55.89 141.0 20.0  
 500 296.39 750.0 20.0  
 1,000 317.59 989.0 20.0  

(c) GalaxyPPG dataset.

of 256.0ms, similar to the GalaxyPPG dataset, which has a mean latency 
of 55.89ms and a 99th percentile latency of 141.0ms. Fig.  6 confirms no 
data loss, as it matches Locust’s 20 users/s spawn rate for all datasets, 
demonstrating robustness and scalability.
Data order guarantee. To maintain data order, each message includes 
a user ID, timestamp, and offset value. The offset is a unique identifier 
assigned to each message within a partition, incrementing sequentially 
as new messages arrive. The consumer processes messages in order by 
tracking offsets, ensuring that records are consumed in the same se-
quence as they were produced. The experimental results were validated 
by checking that all messages belonging to the same user were in the 
correct order within a partition.

3.3. Trade-offs of kafka

This section evaluates the maximum workload that AffectStream can 
sustain while maintaining acceptable latency and throughput. We focus 
on identifying the load threshold beyond which performance degra-
dation becomes significant, as well as analyzing the operational im-
plications of approaching this limit. The evaluation combines queuing 
theory analysis with empirical measurements across multiple datasets.
Sustainable workloads. In streaming data pipelines, all queuing systems 
eventually face performance bottlenecks as the input load increases 
beyond the processing capacity of the deployed infrastructure. This be-
havior aligns with queuing theory: in an M/M/1 model [37], as server 
utilization 𝜌 approaches 1, the expected delay grows asymptotically to 
infinity. In practice, once broker I/O capacity or consumer fetch rates 
are saturated, queue backlogs grow without bound, and if sustained, 
can lead to disk exhaustion and forced broker shutdowns.

To analyze AffectStream’s sustainable workload, we incrementally 
increased the number of concurrent users while keeping the per-user 
data generation rate constant at each dataset’s native sampling rates 
(Table  3). For each configuration, we measured the end-to-end mean 
latency, the 99th percentile latency, and the average throughput to 
identify the load threshold at which performance degradation becomes 
significant.

Table  4 shows the performance of AffectStream with 100, 500, 
and 1,000 concurrent users for each dataset. When using the WESAD 
dataset, which contains sensor data with the highest sampling rate,
AffectStream exhibited latency exceeding 1,000ms with more than 500 
concurrent users, and throughput dropped below 20.0 records/s. For 
5 
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Fig. 5. End-to-end latency distribution for each dataset.

the AMIGOS and GalaxyPPG datasets, no significant increase in latency 
or decrease in throughput was observed due to the relatively low sam-
pling rates of their sensor data. These results indicate that AffectStream
can operate stably when collecting sensor data similar to the WESAD 
dataset with fewer than 500 concurrent users.
Operational trade-offs. While AffectStream achieves low-latency and 
stable throughput under normal workloads, operating a Kafka-based 
streaming pipeline in production entails inherent trade-offs in man-
agement complexity, cost, and performance variability under different 
loads. Kafka cluster management requires continuous monitoring and 

tuning of broker replication, partition assignments, and leader elections 
to ensure fault tolerance and balanced throughput. Furthermore, under 
extreme workloads, traffic surges can saturate broker I/O capacity and 
consumer fetch rates, leading to queue backlogs that grow without 
bound. If queue depths exceed available disk capacity, brokers are 
forced to shut down, interrupting processing entirely. Thus, to avoid 
reaching the workload limit, it is required to scale broker instances 
or increase partition counts, but this comes at the cost of higher 
cloud infrastructure expenses and increased operational overhead; for 
example, Amazon AWS charges per broker instance, data storage, 
and transfer amount. These trade-offs highlight that achieving high 
6 
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Fig. 6. Throughput averaged over 5-s intervals for each dataset.

performance in a cloud-deployed streaming system requires not only 
optimizing throughput and latency, but also balancing cost efficiency. 

4. Impact

AffectStream, a system that monitors users’ affect states in real 
time using wearable sensor data, can be used to realize affective com-
puting applications across various domains such as empowerment at 
workplaces, education, military training, and healthcare. For example, 

integrating AffectStream with voice assistants or chatbots in a call center 
setting can enable real-time detection of customer dissatisfaction or 
confusion, improving interactions by responding appropriately [38,39]. 
This would enhance the user experience and contribute to improved 
service quality. Notably, there is significant potential for integrating
AffectStream into systems designed for education. Previous studies have 
shown that emotion recognition software in education can maximize 
learning outcomes by adjusting the difficulty of the material or pro-
viding encouragement based on the student’s emotional state [4,8,40]. 
7 
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Table 5
Integration plan for various domains.
 Domain Methods Key challenges  
 Education API connection to LMS, 

WebSocket for real-time 
dashboard updates

Classroom dynamics tolerance, 
supporting variable network 
conditions in remote learning

 

 Healthcare FHIR integration with 
EMRs, secure VPN channel

HIPAA/GDPR compliance, 
maintaining data integrity 
during asynchronous updates

 

 Customer 
Service

Kafka-to-CRM pipeline, 
integration with chatbot 
frameworks

Handling peak-hour traffic 
spikes, maintaining low 
response time during high 
concurrency

 

 Psychological 
Therapy

Secure connection for 
remote sessions, 
emotion-aware feedback API

Ensuring stable multimodal 
sensing, privacy preservation in 
sensitive contexts

 

By combining such software with AffectStream, which monitors real-
time changes in a student’s emotional state using multimodal data, 
it is possible to meet individual emotional needs and create a more 
effective learning environment. This approach is beneficial in mili-
tary and medical training, where trainees often practice in simulated 
high-stress conditions [5,9]. With AffectStream, trainers can adjust the 
training process in response to trainees’ emotional states, providing 
just-in-time interventions to help them manage stress more effectively. 
Given the recent trend of actively introducing virtual and augmented 
reality into simulation training in these fields [41–43], systems for real-
time affect recognition such as AffectStream are essential. Further, when 
combined with AI-driven human–robot interaction (HRI), it can offer 
more natural interactions [44,45].

To concretize the integration potential across domains and ad-
dress domain-specific challenges, Table  5 outlines practical integra-
tion methods and considerations. For example, in education, Affect-
Stream can link to learning management systems (LMS) via standard-
ized APIs and stream real-time dashboards to adapt content to students’ 
emotional states. In healthcare, it can connect to electronic medical 
records (EMRs) via FHIR [46] APIs and transmit biosignals securely 
to ensure regulatory compliance. In customer service, a Kafka-based 
pipeline can interface with customer relationship management (CRM) 
or chatbot systems for rapid detection and response to customer dis-
satisfaction. In psychological therapy, secure connections can support 
remote multimodal sensing and deliver emotion-aware feedback while 
preserving privacy.

5. Conclusions

We proposed AffectStream, a real-time affect monitoring system that 
uses a Kafka-based cloud infrastructure for large-scale affect analysis 
in real time. Notably, Kafka-based pub/sub architecture in cloud en-
vironments supports the real-time processing of large-scale user data 
through a high-performance distributed system, effectively detecting 
emotional states such as stress. We demonstrated the applicability of
AffectStream for real-time affect recognition by conducting a trace-
based evaluation with data from wearable sensors. AffectStream has the 
potential to deliver a more personalized user experience across fields 
such as education, healthcare, customer service, and military training, 
thereby enhancing learning efficiency, user satisfaction, and emotional 
responsiveness. To this end, future work should explore extending Af-
fectStream to include additional modalities that are active in emotion 
detection research, such as audio and visual data. Systems should be 
developed to support these modalities (e.g., edge computing based on 
device processing to enhance scalability with a growing number of 
users and modalities). Furthermore, such a system is recommended to 
be validated in real-world environments.
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